Novo Nordisk releases global study on obesity

Updated 21 May 2019

Novo Nordisk releases global study on obesity

A new international study shows that while many health care professionals recognize obesity as a disease, most people living with obesity are still not being treated. 

Eight in 10 obese people believe it is their sole responsibility to lose weight, and wait six years after initial weight loss struggles before speaking to their health care professional (HCP), according to new global data from ACTION IO (Awareness, Care, and Treatment In Obesity Management — an International Observation).

ACTION IO surveyed over 14,500 people with obesity and nearly 2,800 HCPs from 11 countries, including Saudi Arabia. 

“Obesity is one of the most complex, chronic health challenges faced by our society today, yet the current approach to obesity management falls short compared to other diseases,” said Assim A. Alfadda, professor of medicine, endocrinology and metabolism, chairman of Department of Medicine, and director of Obesity Research Center at the College of Medicine, King Saud University.

Vikrant Shrotria, corporate vice president of Novo Nordisk in Saudi Arabia, the sponsor of this study, said people should realize that obesity is a serious chronic disease. “As a leading company in the treatment of obesity, we at Novo Nordisk feel it is our responsibility to work with health care professionals to tackle this disease,” he said. 


J-Clinic study identifies powerful new drug

Updated 26 February 2020

J-Clinic study identifies powerful new drug

A powerful new antibiotic compound has been identified by researchers at MIT using a machine-learning algorithm. The drug killed many of the world’s most problematic disease-causing bacteria in laboratory tests, including some strains that are resistant to all known antibiotics. It also cleared infections in two different mouse models.

The computer model, which can screen more than a 100 million chemical compounds in a matter of days, is designed to pick out potential antibiotics that kill bacteria using different mechanisms than those of existing drugs. 

Regina Barzilay and James Collins, who are faculty co-leads for MIT’s Abdul Latif Jameel Clinic for Machine Learning in Health (J-Clinic), are the senior authors of the study, which appears in Cell. The first author of the paper is Jonathan Stokes, a post-doc at MIT and the Broad Institute of MIT and Harvard.

J-Clinic is a key part of the MIT Quest for Intelligence and focuses on developing machine-learning technologies to revolutionize the prevention, detection, and treatment of disease.

In their new study, the researchers also identified several other promising antibiotic candidates, which they plan to test further. They believe the model could also be used to design new drugs, based on what it has learned about chemical structures that enable drugs to kill bacteria.

“The machine-learning model can explore, in silico, large chemical spaces that can be prohibitively expensive for traditional experimental approaches,” said Barzilay, the Delta Electronics professor of electrical engineering and computer science in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL).

Over the past few decades, very few new antibiotics have been developed, and most of those newly approved antibiotics are slightly different variants of existing drugs. Current methods for screening new antibiotics are often prohibitively costly, require a significant time investment, and are usually limited to a narrow spectrum of chemical diversity.

“We’re facing a growing crisis around antibiotic resistance, and this situation is being generated by both an increasing number of pathogens becoming resistant to existing antibiotics, and an anemic pipeline in the biotech and pharmaceutical industries for new antibiotics,” Collins said.

“The world is in desperate need of new antibiotics to combat dangerous diseases, so it is hugely encouraging that the team at J-Clinic at MIT, has helped make a breakthrough in finding a genuinely new one using machine learning,” said Fady Jameel, Community Jameel president, international. “For decades, Community Jameel has been committed to supporting research that can help improve people’s lives. Combatting the risk from antibiotic-resistant infections, like tuberculosis, could have a profound impact on us all.”

The research was funded and made possible by a number of supporters including the Abdul Latif Jameel Clinic for Machine Learning in Health.