German Rambo: Police in forest hunt for armed homeless man

Police officers stay outside a wooded area during a manhunt near Oppenau, Germany on Monday, July 13, 2020. (dpa via AP)
Short Url
Updated 13 July 2020

German Rambo: Police in forest hunt for armed homeless man

  • Police hunting for a homeless man in combat gear and armed with a bow and arrow and other weapons

BERLIN: In scenes reminiscent of the film “Rambo,” police in Germany’s Black Forest are hunting for a homeless man in combat gear and armed with a bow and arrow and other weapons.
Several dozen officers and helicopters were deployed as the search entered its second day on Monday.
Police in Oppenau, in southwestern Germany, warned local residents to stay at home and not pick up any hitchhikers.
They released a photo of the suspect who has a bow and arrow, a knife and at least one gun and is known to the police for previous offenses, including illegal possession of firearms.
Police said they were informed on Sunday morning that a suspicious man was hanging around a hut in the forest.
When officers approached him they found that he was armed with a bow and arrow, a knife and a pistol.
He then “suddenly and completely unexpectedly” threatened them with the firearm, leaving them “no time to react to the dangerous situation,” police said late Sunday.
He asked the police to put down their weapons and ran away, “presumably” taking their arms with him.
About 100 police officers, including special forces and canine teams, have been dispatched to search for the man.


UK scientists to test extent of airborne COVID-19 transmission

Updated 26 September 2020

UK scientists to test extent of airborne COVID-19 transmission

  • COVID-19 is known to be present in droplets produced from the mouth and nose from people coughing, sneezing, talking or just breathing
  • Findings could affect governments’ safety measures based on climate, air quality

LONDON: A team of UK scientists is set to discover how long COVID-19 can survive in airborne particles.
In an experiment slated to commence on Monday, researchers at the University of Bristol will test whether the virus is at its most virulent in respiratory droplets, or whether it remains active over significant periods in tiny aerosol particles.
COVID-19 is known to be present in droplets produced from the mouth and nose from people coughing, sneezing, talking or just breathing.
But these remain airborne, and therefore active, for a much shorter period of time than aerosol particles before dropping to the floor.
This is the reasoning behind multiple governments’ enforcing social-distancing measures of 2 meters, among other things. 
But were the virus able to survive in much smaller aerosol particles, it is possible that it could travel greater distances — carried by air currents and ventilation systems — and infect more people, rendering social-distancing measures less effective. 
The theory has gained traction as examples from across the world of groups of people being infected despite observing social-distancing measures, or doing so in poorly ventilated spaces.
Prof. Jonathan Reid, who is leading the Bristol team, told The Guardian newspaper: “We know that when bacteria or viruses become airborne in respiratory droplets they very quickly dry down and can lose viability, so that’s an important step to understand when assessing the role of airborne transmission in COVID-19.”
Allen Haddrell, a scientist at the University of Bristol, said: “We can effectively mimic a cold, wet British winter — or even a hot, dry summer in Saudi Arabia — to look at how these dramatic differences in environmental conditions affect how long the virus remains infectious while suspended in air.”
Results will possibly ready by the end of the week for external scrutiny by the broader scientific community.
Despite excitement surrounding the experiment, some scientists have urged caution, especially regarding the scope of practical applications that could result from it.
“I think the science is fine, and will show the principal that you can modify the environment to reduce the survivability of the virus,” said Dr. Julian Tang, a consultant virologist at Leicester Royal Infirmary.
“But the applicability might be tricky, depending on the environmental factors they identify. You’re not going to sit in a theater or cinema if the temperature is 35 degrees and the humidity is 80 percent.”